Proyecciones Journal of Mathematics Vol. 40, N^o 5, pp. 1097-1116, October 2021. Universidad Católica del Norte Antofagasta - Chile doi 10.22199/issn.0717-6279-4258

k-super cube root cube mean labeling of graphs

V. Princy Kala Holy Cross College (Autonomous), India Received : June 2020. Accepted : January 2021

Abstract

Consider a graph G with |V(G)| = p and |E(G)| = q and let $f: V(G) \rightarrow \{k, k+1, k+2, \dots p+q+k-1\}\}$ be an injective function. The induced edge labeling f^* for a vertex labeling f is defined by $f^*(e) = \begin{bmatrix} \sqrt[3]{f(u)^3 + f(v)^3}}{2} \end{bmatrix}$ or $\begin{bmatrix} \sqrt[3]{f(u)^3 + f(v)^3}}{2} \end{bmatrix}$ for all $e = uv \in E(G)$ is bijective. If $f(V(G)) \cup \{f^*(e) : e \in E(G)\} = \{k, k+1, k+2, \dots, p+q+k-1\}$, then f is called a k-super cube root cube mean labeling. If such labeling exists, then G is a k-super cube root cube mean labeling. If such labeling exists, then G is a k-super cube root cube mean graph. In this paper, I introduce k-super cube root cube mean labeling and prove the existence of this labeling to the graphs viz., triangular snake graph T_n , double triangular snake graph $D(T_n)$, Quadrilateral snake graph Q_n , double quadrilateral snake graph $D(Q_n)$, alternate triangular snake graph $A(T_n)$, alternate double triangular snake graph $AD(T_n)$, alternate quadrilateral snake graph $A(Q_n)$, & alternate double quadrilateral snake graph $AD(Q_n)$.

Keywords: *k*-super cube root cube mean labeling, *k*-super cube root cube mean graph, snake graph, alternate snake graph.

MSC(2020): 05C78.

1. Introduction

In this paper, all graphs are simple, finite and undirected with |V(G)| = pand |E(G)| = q. Labeling of a graph is an assignment of integers to the vertices or edges or both subject to certain conditions. For detailed study of graph labeling, refer to J. A. Gallian [2]. Many researchers in practice contributed various types of labeling like k-super mean labeling [3,7], root square mean labeling [6], k-super root square mean labeling [1], cube root cube mean labeling [4], super cube root cube mean labeling [5], etc. In this paper, I have added another type of graph labeling, i.e., k-super cube root cube mean labeling. Consider a graph G with |V(G)| = pand |E(G)| = q and let $f: V(G) \to \{k, k+1, k+2, ..., p+q+k-1\}$ be an injective function. The induced edge labeling f^* for a vertex la- $\left|\sqrt[3]{\frac{f(u)^3 + f(v)^3}{2}}\right| \text{ or } \left[\sqrt[3]{\frac{f(u)^3 + f(v)^3}{2}}\right]$ beling f is defined by $f^*(e) =$ for all $e = uv \in E(G)$ is bijective. If $f(V(G)) \cup \{f^*(e) : e \in E(G)\} =$ $\{k, k+1, k+2, \dots, p+q+k-1\}$, then f is known as k-super cube root cube mean labeling. If such labeling exists, then G is a k-super cube root cube mean graph. In this paper, it is assumed that k is an integer and its value is ≥ 1 .

2. Preliminaries

Definition 2.1. The triangular snake graph T_n is obtained from a path P_n by replacing each edge of the path by a triangle C_3 . That is a triangular snake graph is obtained from a path u_1, u_2, \ldots, u_n by joining u_i and u_{i+1} to a new vertex $v_i, 1 \le i \le n-1$.

Definition 2.2. An alternate triangular snake graph $A(T_n)$ is obtained from a path u_1, u_2, \ldots, u_n by joining u_i and u_{i+1} (alternately) to a new vertex v_i . That is every alternate edge of a path is replaced by a triangle C_3 .

Definition 2.3. A double triangular snake graph $D(T_n)$ consists of two triangular snakes that have a common path.

Definition 2.4. An alternate double triangular snake graph $AD(T_n)$ consists of two alternate triangular snakes having a common path. That is to construct an alternate double triangular snake graph $AD(T_n)$, we have to

join u_i and u_{i+1} , $1 \le i \le n-1$ (alternately) from a path with vertices u_1 , u_2, \ldots, u_n to the vertices v_j and w_j , $1 \le j \le \lfloor \frac{n}{2} \rfloor$.

Definition 2.5. A quadrilateral snake graph Q_n is obtained from a path P_n by replacing each edge of the path by a cycle C_4 . That is a quadrilateral snake graph Q_n is obtained from a path u_1, u_2, \ldots, u_n by joining u_i, u_{i+1} to new vertices v_i and w_i respectively and adding edges v_iw_i for $i = 1, 2, \ldots, n-1$.

Definition 2.6. To construct an alternate quadrilateral snake graph $A(Q_n)$, we have to join u_i and u_{i+1} alternately from a path with vertices u_1, u_2, \ldots, u_n to the vertices v_j, w_j respectively then joining v_j and $w_j, 1 \leq i \leq n-1\&1 \leq j \leq \lfloor \frac{n}{2} \rfloor$. That is every alternate edge of a path is replaced by a cycle C_4 .

Definition 2.7. A double quadrilateral snake graph $D(Q_n)$ is obtained from two quadrilateral snakes that have a common path.

Definition 2.8. An alternate double quadrilateral snake graph $AD(Q_n)$ is obtained from two alternative quadrilateral snakes that have a common path.

3. Main Results

Theorem 3.1. Any triangular snake graph T_n is a k-super cube root cube mean graph.

Proof. Let T_n be a triangular snake graph. Here p = 2n - 1 & q = 3n - 3Hence p + q = 5n - 4. Define a function $f: V(T_n) \rightarrow \{k, k+1, k+2, \dots, p+q+k-1\}$ by $f(u_i) = k + 5i - 5, 1 \le i \le n$ $f(vi) = k + 5i - 3, 1 \le i \le n - 1$. Then, the edge labels of T_n are $f^*(u_iv_i) = k + 5i - 4, 1 \le i \le n - 1$ $f^*(u_iu_{i+1}) = k + 5i - 2, 1 \le i \le n - 1$ $f^*(u_{i+1}v_i) = k + 5i - 1, 1 \le i \le n - 1$. Hence $f(V(T_n)) \cup \{f^*(e) : e \in E(T_n)\} = \{k, k+1, k+2, \dots, p+q+k-1\}$. Therefore any Triangular snake graph T_n is a k-super cube root cube mean graph. An example of 400-super cube root cube mean labeling of T_5 is shown in Figure 1

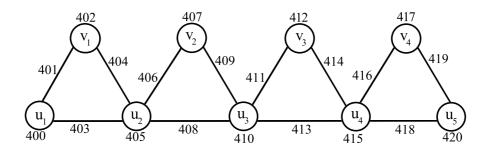


Figure 1: 400-super cube root cube mean labeling of T_5

Theorem 3.2. Any alternate triangular snake graph $A(T_n)$ is a k-super cube root cube mean graph.

Proof. Let $A(T_n)$ be an alternate triangular snake graph. In this theorem, consider two cases.

Case 1. The triangle in A(T_n) starts from u₁ In this case $p = \begin{cases} \frac{3n}{2}, & \text{if } n \text{ is even}; \\ \frac{3n-1}{2}, & \text{if } n \text{ is odd.} \end{cases}$ & q = $\begin{cases} 2n-1, & \text{if } n \text{ is even}; \\ 2n-2, & \text{if } n \text{ is odd.} \end{cases}$

Hence $p + q = \begin{cases} \frac{7n-2}{2}, & if \ n \ is \ even; \\ \frac{7n-5}{2}, & if \ n \ is \ odd. \end{cases}$

Define a function $f: V(A(T_n)) \rightarrow \{k, k+1, k+2, \dots, p+q+k-1 \}$ by

 $\begin{aligned} f(\mathbf{u}_{2i-1}) &= \mathbf{k} + 7\mathbf{i} - 7, \ 1 \leq \mathbf{i} \leq \frac{n}{2} \text{ if n is even } \& \ 1 \leq \mathbf{i} \leq \frac{n+1}{2} \text{ if n is odd.} \\ f(\mathbf{u}_{2i}) &= \mathbf{k} + 7\mathbf{i} - 2, \ 1 \leq \mathbf{i} \leq \frac{n}{2} \text{ if n is even } \& \ 1 \leq \mathbf{i} \leq \frac{n-1}{2} \text{ if n is odd.} \end{aligned}$

 $f(v_i) = k + 7i - 5, 1 \le i \le \frac{n}{2}$ if n is even & $1 \le i \le \frac{n-1}{2}$ if n is odd. Then, the edge labels of $A(T_n)$ are

 $\begin{array}{l} f^{*}(u_{2i-1}u_{2i}) = k + 7i - 4, \ 1 \leq i \leq \frac{n}{2} \ \text{if } n \ \text{is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if } n \ \text{is odd.} \\ f^{*}(u_{2i}u_{2i+1}) = k + 7i - 1, \ 1 \leq i \leq \frac{n-2}{2} \ \text{if } n \ \text{is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if } n \ \text{is odd.} \\ f^{*}(u_{2i-1}v_{i}) = k + 7i - 6, \ 1 \leq i \leq \frac{n}{2} \ \text{if } n \ \text{is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if } n \ \text{is odd.} \\ f^{*}(u_{2i}v_{i}) = k + 7i - 3, \ \ 1 \leq i \leq \frac{n}{2} \ \text{if } n \ \text{is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if } n \ \text{is odd.} \\ f^{*}(u_{2i}v_{i}) = k + 7i - 3, \ \ 1 \leq i \leq \frac{n}{2} \ \text{if } n \ \text{is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if } n \ \text{is odd.} \\ \text{Hence } f[V(A(T_{n}))] \cup \{f^{*}(e) : e \in E(A(T_{n}))\} = \{k, \ k+1, \ k+2, \ldots, \ p+q+k-1\}. \\ \text{An example of 15-super cube root cube mean labeling of } A(T_{8}) \ [\text{Triangle} \end{array}$

start from u_1] is shown in Figure 2.

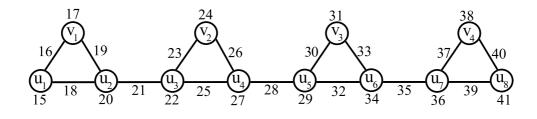


Figure 2: 15-super cube root cube mean labeling of $A(T_8)$ [Triangle start from u_1]

Case 2. The triangle in A(T_n) starts from u₂ In this case p = $\begin{cases} \frac{3n-2}{2}, & \text{if } n \text{ is even};\\ \frac{3n-1}{2}, & \text{if } n \text{ is odd.} \end{cases}$ & q = $\begin{cases} 2n-3, & \text{if } n \text{ is even};\\ 2n-2, & \text{if } n \text{ is odd.} \end{cases}$

Hence $p + q = \begin{cases} \frac{7n-8}{2}, & \text{if } n \text{ is even};\\ \frac{7n-5}{2}, & \text{if } n \text{ is odd}. \end{cases}$

Define a function f: $V(A(T_n)) \rightarrow \{k, k+1, k+2, \dots, p+q+k-1\}$ by

 $f(u_{2i-1}) = k + 7i - 7, \ 1 \le i \le \frac{n}{2}$ if n is even & $1 \le i \le \frac{n+1}{2}$ if n is odd. $f(u_{2i}) = k + 7i - 5, \ 1 \le i \le \frac{n}{2}$ if n is even & $1 \le i \le \frac{n-1}{2}$ if n is odd.
$$\begin{split} &f(v_i) = k + 7i - 3, \ 1 \leq i \leq \frac{n-2}{2} \ \text{if n is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if n is odd.} \\ &\text{Then, the edge labels of } A(T_n) \ \text{are} \\ &f^*(u_{2i-1}u_{2i}) = k + 7i - 6, \ 1 \leq i \leq \frac{n}{2} \ \text{if n is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if n is odd.} \\ &f^*(u_{2i}u_{2i+1}) = k + 7i - 2, \ \ 1 \leq i \leq \frac{n-2}{2} \ \text{if n is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if n is odd.} \\ &f^*(u_{2i}v_i) = k + 7i - 4, \ \ 1 \leq i \leq \frac{n-2}{2} \ \text{if n is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if n is odd.} \\ &f^*(u_{2i+1}v_i) = k + 7i - 1, \ 1 \leq i \leq \frac{n-2}{2} \ \text{if n is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if n is odd.} \\ &f^*(u_{2i+1}v_i) = k + 7i - 1, \ 1 \leq i \leq \frac{n-2}{2} \ \text{if n is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if n is odd.} \\ &\text{Hence } f[V(A(T_n))] \cup \{f^*(e) : e \in E(A(T_n))\} = \{k, \ k+1, \ k+2, \dots, \ p+q+k-1\}. \\ &\text{An example of 15-super cube root cube mean labeling of } A(T_7) \ [Triangle] \end{split}$$

start from u_2] is shown in Figure 3.

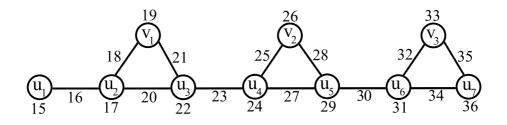


Figure 3: 15-super cube root cube mean labeling of $A(T_7)$ [Triangle start from u_2]

From the above cases, an alternate triangular snake graph $A(T_n)$ is a k-super cube root cube mean graph.

Theorem 3.3. Any double triangular snake graph $D(T_n)$ is a k-super cube root cube mean graph.

Proof. Let $D(T_n)$ be a double triangular snake graph. Here p = 3n - 2 & q = 5n - 5 Hence p + q = 8n - 7. Define a function $f:V(D(T_n)) \rightarrow \{k, k+1, k+2, \dots, p+q+k-1\}$ by $f(u_1) = k$, for all k. $f(u_2) = \begin{cases} k+5, k=1,2,3,\dots 10; \\ k+6, otherwise. \end{cases}$

$$\begin{split} &f(u_i) = k + 8i - 10, \ 3 \leq i \leq n \\ &f(v_i) = k + 8i, \ 1 \leq i \leq n - 1 \\ &f(w_i) = k + 8i - 6, \ 1 \leq i \leq n - 1. \\ &Then, the edge labels of $D(T_n)$ are
 $f^*(u_i u_{i+1}) = k + 8i - 5, \ 1 \leq i \leq n - 1. \\ &f^*(u_1 v_1) = \begin{cases} k + 6, \ k = 1, 2, 3, \dots 10; \\ k + 4, \ otherwise. \\ &f^*(u_i v_i) = k + 8i - 4, \ 2 \leq i \leq n - 1 \\ &f^*(u_i u_i) = k + 8i - 1, \ 1 \leq i \leq n - 1 \\ &f^*(u_i w_i) = k + 8i - 7, \ 1 \leq i \leq n - 1 \\ &f^*(u_2 w_1) = \begin{cases} k + 4, \ k = 1, 2, 3, \dots 10; \\ k + 5, \ otherwise. \\ &f^*(u_{i+1} w_i) = k + 8i - 3, \ 2 \leq i \leq n - 1 \\ &f^*(u_{i+1} w_i) = k + 8i - 3, \ 2 \leq i \leq n - 1. \\ &Hence \ f[V(D(T_n))] \cup \{f^*(e) : e \in E(D(T_n))\} = \{k, \ k + 1, \ k + 2, \dots, \ p + q + k - 1\}. \\ ∴ any double triangular snake graph \ D(T_n) is a k-super cube root \\ \end{split}$$$

cube mean graph.

An example of 75-super cube root cube mean labeling of $D(T_5)$ is shown

in Figure 4.

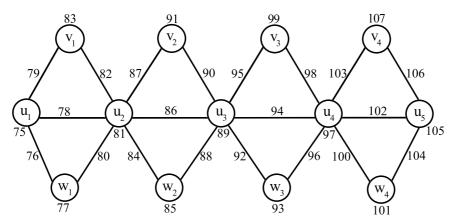


Figure 4: 75-super cube root cube mean labeling of $D(T_5)$

Theorem 3.4. Any alternate double triangular snake graph $AD(T_n)$ is a k-super cube root cube mean graph.

Proof. Let AD(Tn) be an alternate double triangular snake graph. In this theorem, consider two cases.

 $\begin{array}{l} \mbox{Case 1. The triangle in AD(T_n) starts from u_1 \\ \mbox{In this case } p = \begin{cases} 2n, \ if \ n \ is \ even; \\ 2n-1, \ if \ n \ is \ odd. \\ \mbox{\& } q = \begin{cases} 3n-1, \ if \ n \ is \ even; \\ 3n-3, \ if \ n \ is \ odd. \end{cases}$ $\begin{array}{l} \mbox{Hence } p+q = \begin{cases} 5n-1, \ if \ n \ is \ even; \\ 5n-4, \ if \ n \ is \ odd. \end{cases}$ $\begin{array}{l} \mbox{Define a function } f:V(AD(T_n)) \rightarrow \{k, \ k+1, \ k+2, \ldots, \ p+q+k-1 \ \} \ by \\ f(u_{2i-1}) = k+10i-8, \ 1 \le i \le \frac{n}{2} \ if \ n \ is \ even \ \& 1 \le i \le \frac{n-1}{2} \ if \ n \ is \ odd. \end{cases}$ $\begin{array}{l} \mbox{f(}u_{2i}) = k+10i-2, \ 1 \le i \le \frac{n}{2} \ if \ n \ is \ even \ \& 1 \le i \le \frac{n-1}{2} \ if \ n \ is \ odd. \end{cases}$ $\begin{array}{l} \mbox{f(}w_i) = k+10i-10, \ 1 \le i \le \frac{n}{2} \ if \ n \ is \ even \ \& 1 \le i \le \frac{n-1}{2} \ if \ n \ is \ odd. \end{cases}$ $\begin{array}{l} \mbox{Then, the edge labels of AD(T_n) \ are \\ f^*(u_{2i-1}u_{2i}) = k+10i-6, \ 1 \le i \le \frac{n}{2} \ if \ n \ is \ even \ \& 1 \le i \le \frac{n-1}{2} \ if \ n \ is \ odd. \end{cases}$ $\begin{array}{l} \mbox{f(}u_{2i-1}u_{2i}) = k+10i-1, \ 1 \le i \le \frac{n}{2} \ if \ n \ is \ even \ \& 1 \le i \le \frac{n-1}{2} \ if \ n \ is \ odd. \end{cases}$ $\begin{array}{l} \mbox{f(}w_i) = k+10i-10, \ 1 \le i \le \frac{n}{2} \ if \ n \ is \ even \ \& 1 \le i \le \frac{n-1}{2} \ if \ n \ is \ odd. \end{cases}$ $\begin{array}{l} \mbox{f(}w_{2i}u_{2i+1}) = k+10i-1, \ 1 \le i \le \frac{n-2}{2} \ if \ n \ is \ even \ \& 1 \le i \le \frac{n-1}{2} \ if \ n \ is \ odd. \end{cases}$ $\begin{array}{l} \mbox{f(}w_{2i}u_{2i+1}) = k+10i-4, \ 1 \le i \le \frac{n-2}{2} \ if \ n \ is \ even \ \& 1 \le i \le \frac{n-1}{2} \ if \ n \ is \ odd. \end{cases}$ $\begin{array}{l} \mbox{f(}w_{2i}u_{2i+1}) = k+10i-4, \ 1 \le i \le \frac{n-2}{2} \ if \ n \ is \ even \ \& 1 \le i \le \frac{n-1}{2} \ if \ n \ is \ odd. \end{cases}$ $\begin{array}{l} \mbox{f(}w_{2i}u_{2i}v_{2i}) = k+10i-3, \ 1 \le i \le \frac{n}{2} \ if \ n \ is \ even \ \& 1 \le i \le \frac{n-1}{2} \ if \ n \ is \ odd. \end{cases}$ $\begin{array}{l} \mbox{f(}w_{2i}u_{2i}v_{2i}) = k+10i-3, \ 1 \le i \le \frac{n}{2} \ if \ n \ is \ even \ \& 1 \le i \le \frac{n-1}{2} \ if \ n \ is \ odd. \end{cases}$ $\begin{array}{l} \mbox{f(}w_{2i}u_{2i}v_{2i}) = k+10i-3, \ 1 \le i \le \frac{n}{2} \ if \ n \ is \ even \ \& 1 \le i \le \frac{n-1}{2} \ if \ n \ is \ odd. \end{cases}$ $\begin{array}{l} \mbox{f(}w_{2i}u_{2i}v_{2i}) = k+10i-9, \ 1 \le i \le \frac{n}{2} \ if \ n \ is \ even \ \& 1 \le i \le \frac{n-1}{2} \$

start from u_1] is shown in Figure 5.

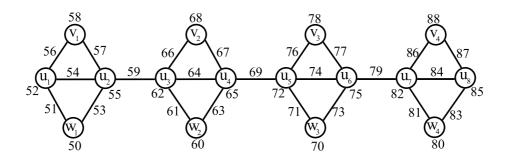


Figure 5: 50-super cube root cube mean labeling of $AD(T_8)$ [triangle start from u_1]

Case 2. The triangle in AD(T_n) starts from u₂ In this case p = $\begin{cases} 2n-2, & \text{if } n \text{ is even;} \\ 2n-1, & \text{if } n \text{ is odd.} \end{cases}$ & q = $\begin{cases} 3n-5, & \text{if } n \text{ is even;} \\ 3n-3, & \text{if } n \text{ is odd.} \end{cases}$

Hence p + q = $\begin{cases} 5n - 7, & if \ n \ is \ even; \\ 5n - 4, & if \ n \ is \ odd. \end{cases}$

Define a function f: V(AD(T_n)) \rightarrow {k, k+1, k+2,..., p+q+k-1 }

by

 $\begin{aligned} f(\mathbf{u}_{2i-1}) &= \mathbf{k} + 10\mathbf{i} - 10, \ 1 \leq \mathbf{i} \leq \frac{n}{2} \ \text{if n is even } \& \ 1 \leq \mathbf{i} \leq \frac{n+1}{2} \ \text{if n is odd.} \\ f(\mathbf{u}_{2i}) &= \mathbf{k} + 10\mathbf{i} - 8, \ 1 \leq \mathbf{i} \leq \frac{n}{2} \ \text{if n is even } \& \ 1 \leq \mathbf{i} \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f(\mathbf{v}_i) &= \mathbf{k} + 10\mathbf{i} - 4, \ 1 \leq \mathbf{i} \leq \frac{n-2}{2} \ \text{if n is even } \& \ 1 \leq \mathbf{i} \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f(\mathbf{w}_i) &= \mathbf{k} + 10\mathbf{i} - 5, \ 1 \leq \mathbf{i} \leq \frac{n-2}{2} \ \text{if n is even } \& \ 1 \leq \mathbf{i} \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f(\mathbf{w}_i) &= \mathbf{k} + 10\mathbf{i} - 5, \ 1 \leq \mathbf{i} \leq \frac{n-2}{2} \ \text{if n is even } \& \ 1 \leq \mathbf{i} \leq \frac{n-1}{2} \ \text{if n is odd.} \\ \text{Then, the edge labels of AD}(\mathbf{T}_n) \ \text{are} \\ f^*(\mathbf{u}_{2i-1}\mathbf{u}_{2i}) &= \mathbf{k} + 10\mathbf{i} - 9, \ 1 \leq \mathbf{i} \leq \frac{n-2}{2} \ \text{if n is even } \& \ 1 \leq \mathbf{i} \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f^*(\mathbf{u}_{2i}\mathbf{u}_{2i+1}) &= \mathbf{k} + 10\mathbf{i} - 3, \ 1 \leq \mathbf{i} \leq \frac{n-2}{2} \ \text{if n is even } \& \ 1 \leq \mathbf{i} \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f^*(\mathbf{u}_{2i+1}\mathbf{v}_i) &= \mathbf{k} + 10\mathbf{i} - 6, \ 1 \leq \mathbf{i} \leq \frac{n-2}{2} \ \text{if n is even } \& \ 1 \leq \mathbf{i} \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f^*(\mathbf{u}_{2i+1}\mathbf{w}_i) &= \mathbf{k} + 10\mathbf{i} - 1, \ 1 \leq \mathbf{i} \leq \frac{n-2}{2} \ \text{if n is even } \& 1 \leq \mathbf{i} \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f^*(\mathbf{u}_{2i+1}\mathbf{w}_i) &= \mathbf{k} + 10\mathbf{i} - 2, \ 1 \leq \mathbf{i} \leq \frac{n-2}{2} \ \text{if n is even } \& 1 \leq \mathbf{i} \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f^*(\mathbf{u}_{2i+1}\mathbf{w}_i) &= \mathbf{k} + 10\mathbf{i} - 2, \ 1 \leq \mathbf{i} \leq \frac{n-2}{2} \ \text{if n is even } \& 1 \leq \mathbf{i} \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f^*(\mathbf{u}_{2i+1}\mathbf{w}_i) &= \mathbf{k} + 10\mathbf{i} - 2, \ 1 \leq \mathbf{i} \leq \frac{n-2}{2} \ \text{if n is even } \& 1 \leq \mathbf{i} \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f^*(\mathbf{u}_{2i+1}\mathbf{w}_i) &= \mathbf{k} + 10\mathbf{i} - 2, \ 1 \leq \mathbf{i} \leq \frac{n-2}{2} \ \text{if n is even } \& 1 \leq \mathbf{i} \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f^*(\mathbf{u}_{2i+1}\mathbf{w}_i) &= \mathbf{k} + 10\mathbf{i} - 2, \ 1 \leq \mathbf{i} \leq \frac{n-2}{2} \ \text{if n is even } \& 1 \leq \mathbf{i} \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f^*(\mathbf{u}_{2i+1}\mathbf{w}_i) &= \mathbf{k} + 10\mathbf{i} - 2, \ 1 \leq \mathbf{i} \leq \frac{n-2}{2} \ \text{if n is even } \& 1 \leq \mathbf{i} \leq 1 \leq \frac{n-1}{2} \ \text{if n is odd.} \end{cases}$

odd.

 $\begin{aligned} \mathbf{f}^*(\mathbf{u}_{2i}\mathbf{w}_i) &= \mathbf{k} + 10\mathbf{i} - 7, \ 1 \leq \mathbf{i} \leq \frac{n-2}{2} \text{ if n is even } \& \ 1 \leq \mathbf{i} \leq \frac{n-1}{2} \text{ if n is odd.} \\ \text{Hence } \mathbf{f}[\mathrm{V}(\mathrm{AD}(\mathrm{T}_n))] \cup \{\mathbf{f}^*(\mathbf{e}) : \mathbf{e} \in \mathrm{E}(\mathrm{AD}(\mathrm{T}_n))\} = \{\mathbf{k}, \ \mathbf{k} + 1, \ \mathbf{k} + 2, \dots, \ \mathbf{p} + \mathbf{q} + \mathbf{k} - 1\}. \\ \text{An example of 50-super cube root cube mean labeling of } AD(T_7) \text{ [triangle} \end{aligned}$

start from u_2] is shown in Figure 6.

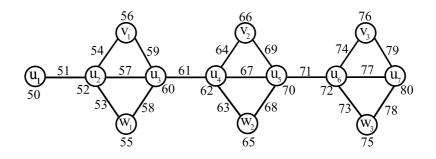


Figure 6: 50-super cube root cube mean labeling of $AD(T_7)$ [triangle start from u_2]

From the above cases, an alternate double triangular snake graph $AD(T_n)$ is a k-super cube root cube mean graph

Theorem 3.5. Any Quadrilateral snake graph Q_n is a k-super cube root cube mean graph.

Proof. Let Q_n be a quadrilateral snake graph. Here p = 3n - 2 & q = 4n - 4 Hence p + q = 7n - 6. Define a function $f: V(Q_n) \to \{k, k+1, k+2, ..., p+q+k-1\}$ by $f(u_i) = k + 7i - 7, 1 \le i \le n$ $f(v_i) = k + 7i - 5, 1 \le i \le n - 1$ $f(w_1) = \begin{cases} k+4, k = 1, 2, 3; \\ k+5, otherwise. \end{cases}$

 $\mathbf{f}(\mathbf{w}_i) = \mathbf{k} + 7\mathbf{i} - 2, \, 2 \leq \mathbf{i} \leq \mathbf{n} - 1.$

Then, the edge labels of Q_n are

$$f^*(u_1u_2) = \begin{cases} k+5, \ k=1,2,3; \\ k+4, \ otherwise. \end{cases}$$

 $\begin{aligned} f^*(u_i u_{i+1}) &= k + 7i - 3, \ 2 \leq i \leq n - 1 \\ f^*(u_i v_i) &= k + 7i - 6, \ 1 \leq i \leq n - 1 \\ f^*(u_{i+1} w_i) &= k + 7i - 1, \ 1 \leq i \leq n - 1 \\ f^*(v_i w_i) &= k + 7i - 4, \ 1 \leq i \leq n - 1. \\ \text{Hence } f[V(Q_n)] \cup \{f^*(e) : e \in E(Q_n)\} = \{k, \ k+1, \ k+2, \dots, \ p+q+k-1\}. \end{aligned}$ Therefore any Quadrilateral snake graph Q_n is a k-super cube root cube

mean graph.

An example of 30-Super cube root cube mean labeling of Q_5 is shown in

Figure 7.

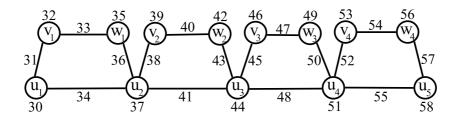


Figure 7: 30-Super cube root cube mean labeling of Q_5

Theorem 3.6. Any alternate quadrilateral snake graph $A(Q_n)$ is a k-super cube root cube mean graph.

Proof. Let A (Q_n) be an alternate quadrilateral snake graph. In this theorem, consider two cases.

Case 1. Quadrilateral in $A(Q_n)$ starts from u_1 . In this case $p = \begin{cases} 2n, & if \ n \ is \ even; \\ 2n-1, & if \ n \ is \ odd. \end{cases}$

$$\& \mathbf{q} = \begin{cases} \frac{5n-2}{2}, & \text{if } n \text{ is even};\\ \frac{5n-5}{2}, & \text{if } n \text{ is odd.} \end{cases}$$

Hence $p + q = \begin{cases} \frac{9n-2}{2}, & \text{if } n \text{ is even};\\ \frac{9n-7}{2}, & \text{if } n \text{ is odd}. \end{cases}$

Define a function f: $V(A(Q_n)) \rightarrow \{k, k+1, k+2, \dots, p+q+k-1\}$ by

 $\begin{aligned} f(\mathbf{u}_{2i-1}) &= \mathbf{k} + 9\mathbf{i} - 9, \ 1 \le \mathbf{i} \le \frac{n}{2} \text{ if n is even } \& \ 1 \le \mathbf{i} \le \frac{n+1}{2} \text{ if n is odd.} \\ f(\mathbf{u}_{2i}) &= \mathbf{k} + 9\mathbf{i} - 2, \ 1 \le \mathbf{i} \le \frac{n}{2} \text{ if n is even } \& \ 1 \le \mathbf{i} \le \frac{n-1}{2} \text{ if n is odd.} \\ f(\mathbf{v}_i) &= \mathbf{k} + 9\mathbf{i} - 7, \ 1 \le \mathbf{i} \le \frac{n}{2} \text{ if n is even } \& \ 1 \le \mathbf{i} \le \frac{n-1}{2} \text{ if n is odd.} \\ f(\mathbf{w}_1) &= \begin{cases} k+4, \ if \ k=1,2,3; \\ k+5, \ otherwise. \end{cases} \end{aligned}$

 $f(w_i) = k + 9i - 4, 2 \le i \le \frac{n}{2}$ if n is even & $2 \le i \le \frac{n-1}{2}$ if n is odd.

Then, the edge labels of $A(Q_n)$ are

 $f^{*}(u_{1}u_{2}) = \begin{cases} k+5, & if \ k=1,2,3; \\ k+4, & otherwise. \end{cases}$

 $f^*(u_{2i-1}u_{2i}) = k + 9i - 5, 2 \le i \le \frac{n}{2}$ if n is even & $2 \le i \le \frac{n-1}{2}$ if n is odd.

 $\begin{array}{l} f^*(u_{2i}u_{2i+1}) = k + 9i - 1, \ 1 \leq i \leq \frac{n-2}{2} \ \text{if n is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f^*(u_{2i-1}v_i) = k + 9i - 8, \ 1 \leq i \leq \frac{n}{2} \ \text{if n is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f^*(u_{2i}w_i) = k + 9i - 3, \ 1 \leq i \leq \frac{n}{2} \ \text{if n is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f^*(v_iw_i) = k + 9i - 6, \ 1 \leq i \leq \frac{n}{2} \ \text{if n is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if n is odd.} \\ f^*(v_iw_i) = k + 9i - 6, \ 1 \leq i \leq \frac{n}{2} \ \text{if n is even } \& \ 1 \leq i \leq \frac{n-1}{2} \ \text{if n is odd.} \\ \text{Hence } f[V(A(Q_n))] \cup \{f^*(e) : e \in E(A(Q_n))\} = \{k, \ k+1, \ k+2, \ldots, \ p+q+k-1\}. \\ \text{An example of 100-super cube root cube mean labeling of } A(Q_6) \ [quadri-$

lateral start from u_1] is shown in Figure 8.

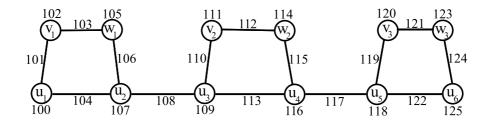


Figure 8: 100-super cube root cube mean labeling of $A(Q_6)$ [quadrilateral start from u_1]

Case 2. Quadrilateral in $A(Q_n)$ starts from u_2 In this case $p = \begin{cases} 2n-2, & if \ n \ is \ even; \\ 2n-1, & if \ n \ is \ odd. \end{cases}$

& q =
$$\begin{cases} \frac{5n}{2} - 4, & if n is even; \\ \frac{5n-5}{2}, & if n is odd. \end{cases}$$

Hence p + q =
$$\begin{cases} \frac{9n-12}{2}, & \text{if } n \text{ is even};\\ \frac{9n-7}{2}, & \text{if } n \text{ is odd}. \end{cases}$$

Define a function f : V(A(Q_n)) \rightarrow {k, k+1, k+2,..., p+q+k-1 } by

 $\begin{aligned} f(u_{2i-1}) &= k + 9i - 9, \ 1 \le i \le \frac{n}{2} \text{ if } n \text{ is even } \& \ 1 \le i \le \frac{n+1}{2} \text{ if } n \text{ is odd.} \\ f(u_{2i}) &= k + 9i - 7, \ 1 \le i \le \frac{n}{2} \text{ if } n \text{ is even } \& \ 1 \le i \le \frac{n-1}{2} \text{ if } n \text{ is odd.} \\ &= k + 9i - 5, \ 1 \le i \le \frac{n-2}{2} \text{ if } n \text{ is even } \& \ 1 \le i \le \frac{n-1}{2} \text{ if } n \text{ is odd.} \\ f(w_1) &= \begin{cases} k+6, \ if \ k=1; \\ k+7, \ otherwise. \end{cases} \end{aligned}$

 $f(w_i) = k + 9i - 2, 2 \le i \le \frac{n-2}{2}$ if n is even & $2 \le i \le \frac{n-1}{2}$ if n is odd.

Then, the edge labels of $A(Q_n)$ are

 $f^*(u_{2i-1}u_{2i}) = k + 9i - 8, 1 \le i \le \frac{n}{2}$ if n is even & $1 \le i \le \frac{n-1}{2}$ if n is odd.

$$\mathbf{f}^*(\mathbf{u}_2\mathbf{u}_3) = \begin{cases} k+7, & if \ k=1;\\ k+6, & otherwise \end{cases}$$

 $f^*(u_{2i}u_{2i+1}) = k + 9i - 3, 2 \le i \le \frac{n-2}{2}$ if n is even & $2 \le i \le \frac{n-1}{2}$ if n is

odd.

 $\begin{aligned} f^*(u_{2i}v_i) &= k + 9i - 6, \ 1 \le i \le \frac{n-2}{2} \text{ if } n \text{ is even } \& \ 1 \le i \le \frac{n-1}{2} \text{ if } n \text{ is odd.} \\ f^*(u_{2i+1}w_i) &= k + 9i - 1, \ 1 \le i \le \frac{n-2}{2} \text{ if } n \text{ is even } \& \ 1 \le i \le \frac{n-1}{2} \text{ if } n \text{ is odd.} \\ f^*(v_iw_i) &= k + 9i - 4, \ 1 \le i \le \frac{n-2}{2} \text{ if } n \text{ is even } \& \ 1 \le i \le \frac{n-1}{2} \text{ if } n \text{ is odd.} \\ \text{Hence } f[V(A(Q_n))] \cup \{f^*(e) : e \in E(A(Q_n))\} = \{k, \ k+1, \ k+2, \dots, \ p+q+k-1\}. \end{aligned}$

An example of 100-super cube root cube mean labeling of $A(Q_7)$ [quadrilateral start from u_2] is shown in Figure 9.

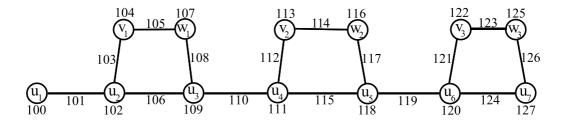


Figure 9: 100-super cube root cube mean labeling of $A(Q_7)$ [quadrilateral start from u_2]

From the above cases, an alternate quadrilateral snake graph $A(Q_n)$ is a k-super cube root cube mean graph.

Theorem 3.7. Any double quadrilateral snake graph $D(Q_n)$ is a k-super cube root cube mean graph.

Proof. Let $D(Q_n)$ be a double quadrilateral snake graph. Here p = 5n - 4 & q = 7n - 7Hence p + q = 12n - 11. Define a function $f: V(D(Q_n)) \rightarrow \{k, k+1, k+2, ..., p+q+k-1\}$ by $f(u_i) = k + 12i - 12, 1 \le i \le n$ $f(v_i) = k + 12i - 10, 1 \le i \le n - 1$ $f(w_i) = k + 12i - 7, 1 \le i \le n - 1$ $f(w'_i) = k + 12i - 6, 1 \le i \le n - 1$ $f(w'_1) = \begin{cases} k+8, if k = 1, 2, 3, ..., 9; \\ k+10, otherwise. \end{cases}$

 $f(w'_i) = k + 12i - 2, 2 \le i \le n - 1.$

Then, the edge labels of $D(Q_n)$ are

$$f^{*}(u_{1}u_{2}) = \begin{cases} k+9, \ if \ k = 1, 2, 3, \dots, 9; \\ k+7, \ otherwise. \end{cases}$$

 $\begin{aligned} f^*(u_i u_{i+1}) &= k + 12i - 5, \ 2 \leq i \leq n - 1 \\ f^*(u_i v_i) &= k + 12i - 11, \ 1 \leq i \leq n - 1 \\ f^*(u_2 w_1) &= \begin{cases} k + 10, \ if \ k = 1, 2, 3, \dots, 9; \\ k + 9, \ otherwise. \end{cases} \\ f^*(u_{i+1} w_i) &= k + 12i - 3, \ 2 \leq i \leq n - 1 \\ f^*(v_i w_i) &= k + 12i - 9, \ 1 \leq i \leq n - 1 \\ f^*(u_i v_i') &= k + 12i - 8, \ 1 \leq i \leq n - 1 \\ f^*(u_{i+1} w_i') &= k + 12i - 1, \ 1 \leq i \leq n - 1 \\ f^*(v_1' w_1') &= \begin{cases} k + 7, \ if \ k = 1, 2, 3, \dots, 9; \\ k + 8, \ otherwise. \end{cases} \\ f^*(v_i' w_i') &= k + 12i - 4, \ 2 \leq i \leq n - 1 \\ Hence \ f[V(D(Q_n))] \cup \{f^*(e): e \in E(D(Q_n))\} = \{k, \ k + 1, \ k + 2, \dots, \ p + q + k - 1\}. \\ Therefore any double quadrilateral snake graph \ D(Q_n) \ is a k-super cube root cube mean graph. \end{aligned}$

An example of 25- Super cube root cube mean labeling of $D(Q_5)$ is shown

in Figure 10.

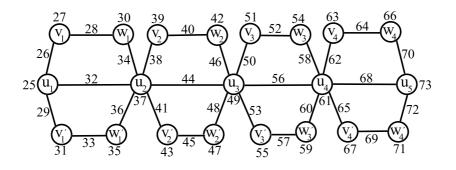


Figure 10: caption 25- Super cube root cube mean labeling of $D(Q_5)$

Theorem 3.8. Any alternate double quadrilateral snake graph $AD(Q_n)$ is a k-super cube root cube mean graph.

Proof. Let $AD(Q_n)$ be an alternate double quadrilateral snake graph In this theorem, consider two cases.

Case 1. Quadrilateral in $AD(Q_n)$ starts from u_1 In this case $p = \begin{cases} 3n, if n is even; \\ 3n-2, if n is odd. \end{cases}$

$$\& \mathbf{q} = \begin{cases} 4n-1, & \text{if } n \text{ is even}; \\ 4n-4, & \text{if } n \text{ is odd}. \end{cases}$$

Hence p + q = $\begin{cases} 7n - 1, & if \ n \ is \ even; \\ 7n - 6, & if \ n \ is \ odd. \end{cases}$

Define a function f: $V(AD(Q_n)) \rightarrow \{k, k+1, k+2, \dots, p+q+k-1\}$

bv

 $\begin{aligned} & \text{fy} \\ & \text{f}(u_{2i-1}) = k + 14i - 14, 1 \le i \le \frac{n}{2} \text{ if n is even } \& \ 1 \le i \le \frac{n+1}{2} \text{ if n is odd.} \\ & \text{f}(u_{2i}) = k + 14i - 2, 1 \le i \le \frac{n}{2} \text{ if n is even } \& \ 1 \le i \le \frac{n-1}{2} \text{ if n is odd.} \\ & \text{f}(v_i) = k + 14i - 12, 1 \le i \le \frac{n}{2} \text{ if n is even } \& \ 1 \le i \le \frac{n-1}{2} \text{ if n is odd.} \\ & \text{f}(w_i) = k + 14i - 9, \ 1 \le i \le \frac{n}{2} \text{ if n is even } \& \ 1 \le i \le \frac{n-1}{2} \text{ if n is odd.} \\ & \text{f}(w_i') = k + 14i - 8, \ 1 \le i \le \frac{n}{2} \text{ if n is even } \& \ 1 \le i \le \frac{n-1}{2} \text{ if n is odd.} \\ & \text{f}(w_i') = k + 14i - 8, \ 1 \le i \le \frac{n}{2} \text{ if n is even } \& \ 1 \le i \le \frac{n-1}{2} \text{ if n is odd.} \\ & \text{f}(w_1') = \begin{cases} k + 8, \ if \ k = 1, 2, 3, \dots, 9; \\ k + 10, \ otherwise. \end{cases} \end{aligned}$

 $f(w'_i) = k + 14i - 4$, $2 \le i \le \frac{n}{2}$ if n is even & $2 \le i \le \frac{n-1}{2}$ if n is odd.

Then, the edge labels of $AD(Q_n)$ are

$$f^{*}(u_{1}u_{2}) = \begin{cases} k+9, \ if \ k = 1, 2, \dots, 9; \\ k+7, \ otherwise. \end{cases}$$

 $f^*(u_{2i-1}u_{2i}) = k + 14i - 7, 2 \le i \le \frac{n}{2}$ if n is even & $2 \le i \le \frac{n-1}{2}$ if n is odd. $f^*(u_{2i}u_{2i+1}) = k + 14i - 1, 1 \le i \le \frac{n-2}{2}$ if n is even & $1 \le i \le \frac{n-1}{2}$ if n is odd. $f^*(u_{2i-1}v_i) = k + 14i - 13, 1 \le i \le \frac{n}{2}$ if n is even & $1 \le i \le \frac{n-1}{2}$ if n is odd. $f^*(u_2w_1) = \begin{cases} k+10, & if \ k = 1, 2, \dots, 9; \\ k+9, & otherwise. \end{cases}$

$$\begin{aligned} f^*(u_{2i}w_i) &= k + 14i - 5, \ 2 \leq i \leq \frac{n}{2} \text{ if n is even } \& \ 2 \leq i \leq \frac{n-1}{2} \text{ if n is odd.} \\ f^*(v_iw_i) &= k + 14i - 11, \ 1 \leq i \leq \frac{n}{2} \text{ if n is even } \& \ 1 \leq i \leq \frac{n-1}{2} \text{ if n is odd.} \\ f^*(u_{2i-1}v'_i) &= k + 14i - 10, \ 1 \leq i \leq \frac{n}{2} \text{ if n is even } \& \ 1 \leq i \leq \frac{n-1}{2} \text{ if n is odd.} \\ f^*(u_{2i}w'_i) &= k + 14i - 3, \ 1 \leq i \leq \frac{n}{2} \text{ if n is even } \& \ 1 \leq i \leq \frac{n-1}{2} \text{ if n is odd.} \\ f^*(v_1'w'_1) &= \begin{cases} k+7, \ if \ k=1,2,\ldots,9; \\ k+8, \ otherwise. \end{cases} \\ f^*(v'_iw'_i) &= k + 14i - 6, \ 2 \leq i \leq \frac{n}{2} \text{ if n is even } \& \ 2 \leq i \leq \frac{n-1}{2} \text{ if n is odd.} \\ Hence \ f[V(AD(Q_n))] \cup \{f^*(e) : e \in E(AD(Q_n))\} = \{k, \ k+1, \ k+2,\ldots, \ p+q+k-1\}. \end{aligned}$$

An example of 115-super cube root cube mean labeling of $AD(Q_6)$ [quadrilateral start from u_1] is shown in Figure 11.

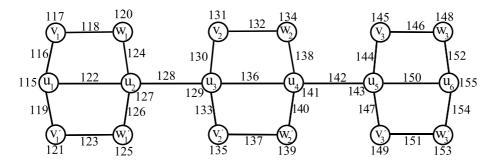


Figure 11: 115-super cube root cube mean labeling of $AD(Q_6)$ [quadrilateral start from u_1]

Case 2. Quadrilateral in AD(Q_n) starts from u₂ In this case p = $\begin{cases} 3n - 4, & if \ n \ is \ even; \\ 3n - 2, & if \ n \ is \ odd. \end{cases}$ & q = $\begin{cases} 4n - 7, & if \ n \ is \ even; \\ 4n - 4, & if \ n \ is \ odd. \end{cases}$ Hence p + q = $\begin{cases} 7n - 11, & if \ n \ is \ even; \\ 7n - 6, & if \ n \ is \ odd. \end{cases}$ Define a function f:V(AD(Q_n)) \rightarrow {k, k+1, k+2,..., p+q+k-1 } by

 $\begin{aligned} &f(\mathbf{u}_{2i-1}) = \mathbf{k} + 14\mathbf{i} - 14, \ 1 \le \mathbf{i} \le \frac{n}{2} \ \text{if n is even } \& \ 1 \le \mathbf{i} \le \frac{n+1}{2} \ \text{if n is odd.} \\ &f(\mathbf{u}_{2i}) = \mathbf{k} + 14\mathbf{i} - 12, \ 1 \le \mathbf{i} \le \frac{n}{2} \ \text{if n is even } \& \ 1 \le \mathbf{i} \le \frac{n-1}{2} \ \text{if n is odd.} \\ &f(\mathbf{v}_i) = \mathbf{k} + 14\mathbf{i} - 10, \ 1 \le \mathbf{i} \le \frac{n-2}{2} \ \text{if n is even } \& \ 1 \le \mathbf{i} \le \frac{n-1}{2} \ \text{if n is odd.} \\ &f(\mathbf{w}_i) = \mathbf{k} + 14\mathbf{i} - 7, \ 1 \le \mathbf{i} \le \frac{n-2}{2} \ \text{if n is even } \& \ 1 \le \mathbf{i} \le \frac{n-1}{2} \ \text{if n is odd.} \\ &f(\mathbf{w}_i) = \mathbf{k} + 14\mathbf{i} - 6, \ \ 1 \le \mathbf{i} \le \frac{n-2}{2} \ \text{if n is even } \& \ 1 \le \mathbf{i} \le \frac{n-1}{2} \ \text{if n is odd.} \\ &f(\mathbf{w}_i') = \mathbf{k} + 14\mathbf{i} - 6, \ \ 1 \le \mathbf{i} \le \frac{n-2}{2} \ \text{if n is even } \& \ 1 \le \mathbf{i} \le \frac{n-1}{2} \ \text{if n is odd.} \\ &f(\mathbf{w}_i') = \mathbf{k} + 14\mathbf{i} - 6, \ \ 1 \le \mathbf{i} \le \frac{n-2}{2} \ \text{if n is even } \& \ 1 \le \mathbf{i} \le \frac{n-1}{2} \ \text{if n is odd.} \\ &f(\mathbf{w}_i') = \begin{cases} k+11, \ if \ k=1,2,3,\ldots,7; \\ k+12, \ otherwise. \end{cases} \end{aligned}$

 $f(w'_i) = k + 14i - 2, \ 2 \le i \le \frac{n-2}{2} \text{ if } n \text{ is even } \& \ 2 \le i \le \frac{n-1}{2} \text{ if } n \text{ is odd.}$

Then, the edge labels of $AD(Q_n)$ are $f^*(u_{2i-1}u_{2i}) = k + 14i - 13, 1 \le i \le \frac{n}{2}$ if n is even & $1 \le i \le \frac{n-1}{2}$ if n is odd.

$$\mathbf{f}^*(\mathbf{u}_2\mathbf{u}_3) = \begin{cases} k+10, \ if \ k = 1, 2, \dots, 7; \\ k+9, \ otherwise. \end{cases}$$

 $f^*(u_{2i}u_{2i+1}) = k + 14i - 5, 2 \le i \le \frac{n-2}{2}$ if n is even & $2 \le i \le \frac{n-1}{2}$ if n is

odd.

 $\begin{aligned} \mathbf{f}^*(\mathbf{u}_{2i}\mathbf{v}_i) &= \mathbf{k} + 14\mathbf{i} - 11, \ 1 \le \mathbf{i} \le \frac{n-2}{2} \text{ if n is even } \& \ 1 \le \mathbf{i} \le \frac{n-1}{2} \text{ if n is odd.} \\ \mathbf{f}^*(\mathbf{u}_3\mathbf{w}_1) &= \begin{cases} k + 12, \ if \ k = 1, 2, \dots, 7; \\ k + 11, \ otherwise. \end{cases} \end{aligned}$

 $f^*(u_{2i+1}w_i) = k + 14i - 3, \ 2 \le i \le \frac{n-2}{2}$ if n is even & $2 \le i \le \frac{n-1}{2}$ if n is

odd.

 $\begin{aligned} f^*(\mathbf{v}_i \mathbf{w}_i) &= \mathbf{k} + 14\mathbf{i} - 9, \ 1 \le \mathbf{i} \le \frac{n-2}{2} \text{ if n is even } \& \ 1 \le \mathbf{i} \le \frac{n-1}{2} \text{ if n is odd.} \\ f^*(\mathbf{u}_{2i} \mathbf{v}_i') &= \mathbf{k} + 14\mathbf{i} - 8, \ 1 \le \mathbf{i} \le \frac{n-2}{2} \text{ if n is even } \& \ 1 \le \mathbf{i} \le \frac{n-1}{2} \text{ if n is odd.} \\ f^*(\mathbf{u}_{2i+1} \mathbf{w}_i') &= \mathbf{k} + 14\mathbf{i} - 1, \ 1 \le \mathbf{i} \le \frac{n-2}{2} \text{ if n is even } \& \ 1 \le \mathbf{i} \le \frac{n-1}{2} \text{ if n is odd.} \\ f^*(\mathbf{v}_1' \mathbf{w}_1') &= \begin{cases} k+9, \ if \ k=1,2,\ldots,7; \\ k+10, \ otherwise. \end{cases} \end{aligned}$

 $f^*(v'_iw'_i) = k + 14i - 4, \ 2 \le i \le \frac{n-2}{2}$ if n is even & $2 \le i \le \frac{n-1}{2}$ if n is odd.

Hence $f[V(AD(Q_n))] \cup \{f^*(e) : e \in E(AD(Q_n))\} = \{k, k+1, k+2, \dots, p+q+k-1\}.$ An example of 115-super cube root cube mean labeling of AD(Q₇) [quadrilateral start from u_2] is shown in Figure 12.

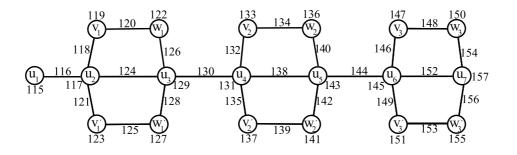


Figure 12: 115- super cube root cube mean labeling of $AD(Q_7)$ [quadrilateral start from u_2]

From the above cases, an alternate double quadrilateral snake graph $AD(Q_n)$ is a k-super cube root cube mean graph. \Box

References

- K. Akilandeswari, "Super Root Square Mean Labeling of Some Graphs", *International Journal of Science and Research (IJSR)*, vol. 6, no. 2, 2017. [On line]. Available: https://bit.ly/2YxOkZB
- [2] J. A. Gallian, "A dynamic survey of graph labeling", *The Electronic Journal of Combinatorics*, # DS6., 2019, [On line]. Available: https://bit.ly/2AojJ92
- P. Jeyanthi, D. Ramya and P. Thangavelu, "On super mean labeling of some graphs", *SUT Journal of Mathematics*, vol. 46, no. 1, pp. 53-66, 2010. [On line]. Available: https://bit.ly/2UHqOrX
- [4] S. Kulandhai Therese and K. Romila, "Cube root Cube Mean labeling of Graphs", *International Journal of Mathematics Trends and Technology (IJMTT)*, vol. 65, no. 2, 2019. [On line]. Available: https://bit.ly/30Gy1wq

- [5] V. S. Radhika and A. Vijayan, "Super Cube root Cube Mean labeling of Graphs", *Journal of Science and Technology*, vol. 5, pp. 17-24, 2020. [On line]. Available: https://bit.ly/30LAghI
- [6] S. Sandhya, S. Somasundaram and S. Anusa, "Some More Results on Root Square mean Graphs", *Journal of Mathematics Research*, vol. 7, no. 1, pp. 72-81, 2015. [On line]. Available: https://bit.ly/30DTCpd
- [7] M. Tamilselvi, K. Akilandeswari, and V. Suguna, "k-Super Mean Labeling of Some Graphs", *International journal of Science and Research (IJSR)*, vol. 5, no. 6, 2016. [On line]. Available: https://bit.ly/2UEeMzu

V. Princy Kala Department of Mathematics, Holy Cross College (Autonomous), Nagercoil-629 004, TN, India e-mail: princykala@holycrossngl.edu.in orcid.org/0000-0001-6264-1100