k-super cube root cube mean labeling of graphs

V. Princy Kala
Holy Cross College (Autonomous), India
Received: June 2020. Accepted: January 2021

Abstract

Consider a graph G with $|V(G)|=p$ and $|E(G)|=q$ and let $f: V(G) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}\}$ be an injective function. The induced edge labeling f^{*} for a vertex labeling f is defined by $f^{*}(e)=\left\lfloor\sqrt[3]{\frac{f(u)^{3}+f(v)^{3}}{2}}\right\rfloor$ or $\left\lceil\sqrt[3]{\frac{f(u)^{3}+f(v)^{3}}{2}}\right\rceil$ for all $e=u v \in E(G)$ is bijective. If $f(V(G)) \cup\left\{f^{*}(e): e \in E(G)\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots$, $p+q+k-1\}$, then f is called a k-super cube root cube mean labeling. If such labeling exists, then G is a k-super cube root cube mean graph. In this paper, I introduce k-super cube root cube mean labeling and prove the existence of this labeling to the graphs viz., triangular snake graph T_{n}, double triangular snake graph $D\left(T_{n}\right)$, Quadrilateral snake graph Q_{n}, double quadrilateral snake graph $D\left(Q_{n}\right)$, alternate triangular snake graph $A\left(T_{n}\right)$, alternate double triangular snake graph $A D\left(T_{n}\right)$, alternate quadrilateral snake graph $A\left(Q_{n}\right), \mathcal{B}$ alternate double quadrilateral snake graph $A D\left(Q_{n}\right)$.

Keywords: k-super cube root cube mean labeling, k-super cube root cube mean graph, snake graph, alternate snake graph.

MSC(2020): 05C78.

1. Introduction

In this paper, all graphs are simple, finite and undirected with $|V(G)|=p$ and $\mid E(G)=q$. Labeling of a graph is an assignment of integers to the vertices or edges or both subject to certain conditions. For detailed study of graph labeling, refer to J. A. Gallian [2]. Many researchers in practice contributed various types of labeling like k-super mean labeling [3,7], root square mean labeling [6], k-super root square mean labeling [1], cube root cube mean labeling [4], super cube root cube mean labeling [5], etc. In this paper, I have added another type of graph labeling, i.e., k-super cube root cube mean labeling. Consider a graph G with $|V(G)|=p$ and $|E(G)|=q$ and let $f: V(G) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ be an injective function. The induced edge labeling f^{*} for a vertex labeling f is defined by $f^{*}(\mathrm{e})=\left\lfloor\sqrt[3]{\frac{f(u)^{3}+f(v)^{3}}{2}}\right\rfloor$ or $\left\lceil\sqrt[3]{\frac{f(u)^{3}+f(v)^{3}}{2}}\right\rceil$ for all $e=u v \in E(G)$ is bijective. If $f(V(G)) \cup\left\{f^{*}(e): e \in E(G)\right\}=$ $\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$, then f is known as k -super cube root cube mean labeling. If such labeling exists, then G is a k-super cube root cube mean graph. In this paper, it is assumed that k is an integer and its value is ≥ 1.

2. Preliminaries

Definition 2.1. The triangular snake graph T_{n} is obtained from a path P_{n} by replacing each edge of the path by a triangle C_{3}. That is a triangular snake graph is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to a new vertex $v_{i}, 1 \leq i \leq n-1$.

Definition 2.2. An alternate triangular snake graph $A\left(T_{n}\right)$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} (alternately) to a new vertex v_{i}. That is every alternate edge of a path is replaced by a triangle C_{3}.

Definition 2.3. A double triangular snake graph $D\left(T_{n}\right)$ consists of two triangular snakes that have a common path.

Definition 2.4. An alternate double triangular snake graph $A D\left(T_{n}\right)$ consists of two alternate triangular snakes having a common path. That is to construct an alternate double triangular snake graph $A D\left(T_{n}\right)$, we have to
join u_{i} and $u_{i+1}, 1 \leq i \leq n-1$ (alternately) from a path with vertices u_{1}, u_{2}, \ldots, u_{n} to the vertices v_{j} and $w_{j}, 1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor$.

Definition 2.5. A quadrilateral snake graph Q_{n} is obtained from a path P_{n} by replacing each edge of the path by a cycle C_{4}. That is a quadrilateral snake graph Q_{n} is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i}, u_{i+1} to new vertices v_{i} and w_{i} respectively and adding edges $v_{i} w_{i}$ for $i=$ $1,2, \ldots, n-1$.

Definition 2.6. To construct an alternate quadrilateral snake graph $A\left(Q_{n}\right)$, we have to join u_{i} and u_{i+1} alternately from a path with vertices u_{1}, u_{2}, \ldots, u_{n} to the vertices v_{j}, w_{j} respectively then joining v_{j} and $w_{j}, 1 \leq i$ $\leq n-1 \& 1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor$. That is every alternate edge of a path is replaced by a cycle C_{4}.

Definition 2.7. A double quadrilateral snake graph $D\left(Q_{n}\right)$ is obtained from two quadrilateral snakes that have a common path.

Definition 2.8. An alternate double quadrilateral snake graph $A D\left(Q_{n}\right)$ is obtained from two alternative quadrilateral snakes that have a common path.

3. Main Results

Theorem 3.1. Any triangular snake graph T_{n} is a k-super cube root cube mean graph.

Proof. Let T_{n} be a triangular snake graph.
Here $p=2 n-1 \& q=3 n-3$
Hence $\mathrm{p}+\mathrm{q}=5 \mathrm{n}-4$.
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{T}_{n}\right) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$\mathrm{f}\left(\mathrm{u}_{i}\right)=\mathrm{k}+5 \mathrm{i}-5,1 \leq \mathrm{i} \leq \mathrm{n}$ $\mathrm{f}(\mathrm{vi})=\mathrm{k}+5 \mathrm{i}-3,1 \leq \mathrm{i} \leq \mathrm{n}-1$.
Then, the edge labels of T_{n} are
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{v}_{i}\right)=\mathrm{k}+5 \mathrm{i}-4,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{u}_{i+1}\right)=\mathrm{k}+5 \mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{i+1} \mathrm{v}_{i}\right)=\mathrm{k}+5 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}-1$.
Hence $\mathrm{f}\left(\mathrm{V}\left(\mathrm{T}_{n}\right)\right) \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}\left(\mathrm{T}_{n}\right)\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.
Therefore any Triangular snake graph T_{n} is a k -super cube root cube mean graph.

An example of 400 -super cube root cube mean labeling of T_{5} is shown in Figure 1

Figure 1: 400-super cube root cube mean labeling of T_{5}

Theorem 3.2. Any alternate triangular snake graph $A\left(T_{n}\right)$ is a k-super cube root cube mean graph.

Proof. Let $\mathrm{A}\left(\mathrm{T}_{n}\right)$ be an alternate triangular snake graph. In this theorem, consider two cases.

Case 1. The triangle in $A\left(T_{n}\right)$ starts from u_{1}
In this case
$\mathrm{p}=\left\{\begin{array}{l}\frac{3 n}{2}, \text { if } n \text { is even } ; \\ \frac{3 n-1}{2}, \text { if } n \text { is odd } .\end{array}\right.$
$\& \mathrm{q}=\left\{\begin{array}{l}2 n-1, \text { if } n \text { is even } ; \\ 2 n-2, \text { if } n \text { is odd. }\end{array}\right.$
Hence $\mathrm{p}+\mathrm{q}=\left\{\begin{array}{l}\frac{7 n-2}{2}, \text { if } n \text { is even } ; \\ \frac{7 n-5}{2}, \text { if } n \text { is odd. }\end{array}\right.$
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{A}\left(\mathrm{T}_{n}\right)\right) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by $\mathrm{f}\left(\mathrm{u}_{2 i-1}\right)=\mathrm{k}+7 \mathrm{i}-7,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even \& $1 \leq \mathrm{i} \leq \frac{n+1}{2}$ if n is odd. $\mathrm{f}\left(\mathrm{u}_{2 i}\right)=\mathrm{k}+7 \mathrm{i}-2,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{v}_{i}\right)=\mathrm{k}+7 \mathrm{i}-5,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
Then, the edge labels of $\mathrm{A}\left(\mathrm{T}_{n}\right)$ are
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i}\right)=\mathrm{k}+7 \mathrm{i}-4,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i+1}\right)=\mathrm{k}+7 \mathrm{i}-1,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{v}_{i}\right)=\mathrm{k}+7 \mathrm{i}-6,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{v}_{i}\right)=\mathrm{k}+7 \mathrm{i}-3, \quad 1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
Hence $f\left[\mathrm{~V}\left(\mathrm{~A}\left(\mathrm{~T}_{n}\right)\right)\right] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}\left(\mathrm{A}\left(\mathrm{T}_{n}\right)\right)\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.
An example of 15 -super cube root cube mean labeling of $\mathrm{A}\left(\mathrm{T}_{8}\right)$ [Triangle
start from u_{1}] is shown in Figure 2.

Figure 2: 15 -super cube root cube mean labeling of $A\left(T_{8}\right)$ [Triangle start from u_{1}]

Case 2. The triangle in $A\left(T_{n}\right)$ starts from u_{2}
In this case $\mathrm{p}= \begin{cases}\frac{3 n-2}{2}, & \text { if } n \text { is even; } \\ \frac{3 n-1}{2}, & \text { if } n \text { is odd. }\end{cases}$
$\& \mathrm{q}=\left\{\begin{array}{l}2 n-3, \text { if } n \text { is even } ; \\ 2 n-2, \text { if } n \text { is odd } .\end{array}\right.$
Hence $\mathrm{p}+\mathrm{q}= \begin{cases}\frac{7 n-8}{2}, & \text { if } n \text { is even; } \\ \frac{7 n-5}{2}, & \text { if } n \text { is odd. }\end{cases}$
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{A}\left(\mathrm{T}_{n}\right)\right) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$\mathrm{f}\left(\mathrm{u}_{2 i-1}\right)=\mathrm{k}+7 \mathrm{i}-7,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n+1}{2}$ if n is odd. $\mathrm{f}\left(\mathrm{u}_{2 i}\right)=\mathrm{k}+7 \mathrm{i}-5,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{v}_{i}\right)=\mathrm{k}+7 \mathrm{i}-3,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd. Then, the edge labels of $\mathrm{A}\left(\mathrm{T}_{n}\right)$ are $\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i}\right)=\mathrm{k}+7 \mathrm{i}-6,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd. $\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i+1}\right)=\mathrm{k}+7 \mathrm{i}-2, \quad 1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{v}_{i}\right)=\mathrm{k}+7 \mathrm{i}-4, \quad 1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd. $\mathrm{f}^{*}\left(\mathrm{u}_{2 i+1} \mathrm{v}_{i}\right)=\mathrm{k}+7 \mathrm{i}-1,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd. Hence $f\left[\mathrm{~V}\left(\mathrm{~A}\left(\mathrm{~T}_{n}\right)\right)\right] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}\left(\mathrm{A}\left(\mathrm{T}_{n}\right)\right)\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.
An example of 15 -super cube root cube mean labeling of $A\left(T_{7}\right)$ [Triangle
start from u_{2}] is shown in Figure 3.

Figure 3: 15 -super cube root cube mean labeling of $A\left(T_{7}\right)$ [Triangle start from u_{2}]

From the above cases, an alternate triangular snake graph $A\left(T_{n}\right)$ is a k-super cube root cube mean graph.

Theorem 3.3. Any double triangular snake graph $D\left(T_{n}\right)$ is a k-super cube root cube mean graph.

Proof. Let $\mathrm{D}\left(\mathrm{T}_{n}\right)$ be a double triangular snake graph.
Here $\mathrm{p}=3 \mathrm{n}-2 \& \mathrm{q}=5 \mathrm{n}-5$ Hence $\mathrm{p}+\mathrm{q}=8 \mathrm{n}-7$.
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{D}\left(\mathrm{T}_{n}\right)\right) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by $\mathrm{f}\left(\mathrm{u}_{1}\right)=\mathrm{k}$, for all k .
$\mathrm{f}\left(\mathrm{u}_{2}\right)=\left\{\begin{array}{l}k+5, k=1,2,3, \ldots 10 ; \\ k+6, \text { otherwise } .\end{array}\right.$
$\mathrm{f}\left(\mathrm{u}_{i}\right)=\mathrm{k}+8 \mathrm{i}-10,3 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{i}\right)=\mathrm{k}+8 \mathrm{i}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{w}_{i}\right)=\mathrm{k}+8 \mathrm{i}-6, \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1$.
Then, the edge labels of $\mathrm{D}\left(\mathrm{T}_{n}\right)$ are
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{u}_{i+1}\right)=\mathrm{k}+8 \mathrm{i}-5,1 \leq \mathrm{i} \leq \mathrm{n}-1$.
$\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)=\left\{\begin{array}{l}k+6, k=1,2,3, \ldots 10 ; \\ k+4, \text { otherwise } .\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{v}_{i}\right)=\mathrm{k}+8 \mathrm{i}-4,2 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{i+1} \mathrm{v}_{i}\right)=\mathrm{k}+8 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{w}_{i}\right)=\mathrm{k}+8 \mathrm{i}-7, \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{2} \mathrm{w}_{1}\right)=\left\{\begin{array}{l}k+4, k=1,2,3, \ldots 10 ; \\ k+5, \text { otherwise } .\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{i+1} \mathrm{w}_{i}\right)=\mathrm{k}+8 \mathrm{i}-3,2 \leq \mathrm{i} \leq \mathrm{n}-1$.
Hence $\mathrm{f}\left[\mathrm{V}\left(\mathrm{D}\left(\mathrm{T}_{n}\right)\right)\right] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}\left(\mathrm{D}\left(\mathrm{T}_{n}\right)\right)\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.
Therefore any double triangular snake graph $\mathrm{D}\left(\mathrm{T}_{n}\right)$ is a k-super cube root
cube mean graph.
An example of 75 -super cube root cube mean labeling of $D\left(T_{5}\right)$ is shown
in Figure 4.

Figure 4: 75-super cube root cube mean labeling of $D\left(T_{5}\right)$

Theorem 3.4. Any alternate double triangular snake graph $A D\left(T_{n}\right)$ is a k-super cube root cube mean graph.

Proof. Let $\mathrm{AD}(\mathrm{T} n)$ be an alternate double triangular snake graph. In this theorem, consider two cases.

Case 1. The triangle in $\operatorname{AD}\left(\mathrm{T}_{n}\right)$ starts from u_{1}
In this case $\mathrm{p}=\left\{\begin{array}{l}2 n, \text { if } n \text { is even; } \\ 2 n-1, \text { if } n \text { is odd. }\end{array}\right.$
$\& \mathrm{q}=\left\{\begin{array}{l}3 n-1, \text { if } n \text { is even; } \\ 3 n-3, \\ \text { if } n \text { is odd. }\end{array}\right.$
Hence $\mathrm{p}+\mathrm{q}=\left\{\begin{array}{l}5 n-1, \text { if } n \text { is even; } \\ 5 n-4, \text { if } n \text { is odd. }\end{array}\right.$
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{AD}\left(\mathrm{T}_{n}\right)\right) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by $\mathrm{f}\left(\mathrm{u}_{2 i-1}\right)=\mathrm{k}+10 \mathrm{i}-8,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n+1}{2}$ if n is odd. $\mathrm{f}\left(\mathrm{u}_{2 i}\right)=\mathrm{k}+10 \mathrm{i}-5,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd. $\mathrm{f}\left(\mathrm{v}_{i}\right)=\mathrm{k}+10 \mathrm{i}-2,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd. $\mathrm{f}\left(\mathrm{w}_{i}\right)=\mathrm{k}+10 \mathrm{i}-10,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd. Then, the edge labels of $\operatorname{AD}\left(\mathrm{T}_{n}\right)$ are $\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i}\right)=\mathrm{k}+10 \mathrm{i}-6,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd. $\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i+1}\right)=\mathrm{k}+10 \mathrm{i}-1,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{v}_{\mathrm{i}}\right)=\mathrm{k}+10 \mathrm{i}-4,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{v}_{i}\right)=\mathrm{k}+10 \mathrm{i}-3,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{w}_{i}\right)=\mathrm{k}+10 \mathrm{i}-9,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{w}_{i}\right)=\mathrm{k}+10 \mathrm{i}-7,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
Hence $\mathrm{f}\left[\mathrm{V}\left(\mathrm{AD}\left(\mathrm{T}_{n}\right)\right)\right] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}\left(\mathrm{AD}\left(\mathrm{T}_{n}\right)\right)\right\}=\{k, k+1, k+2, \ldots, p+q+k-1\}$.
An example of 50 -super cube root cube mean labeling of $\mathrm{AD}\left(\mathrm{T}_{8}\right)[$ triangle
start from $\left.u_{1}\right]$ is shown in Figure 5.

Figure 5: 50-super cube root cube mean labeling of $A D\left(T_{8}\right)$ [triangle start from u_{1}]

Case 2. The triangle in $\operatorname{AD}\left(\mathrm{T}_{n}\right)$ starts from u_{2}
In this case $\mathrm{p}=\left\{\begin{array}{l}2 n-2, \text { if } n \text { is even; } \\ 2 n-1, \text { if } n \text { is odd. }\end{array}\right.$
$\& \mathrm{q}=\left\{\begin{array}{l}3 n-5, \text { if } n \text { is even } ; \\ 3 n-3, \text { if } n \text { is odd } .\end{array}\right.$
Hence $\mathrm{p}+\mathrm{q}=\left\{\begin{array}{l}5 n-7, \text { if } n \text { is even } ; \\ 5 n-4, \text { if } n \text { is odd. }\end{array}\right.$
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{AD}\left(\mathrm{T}_{n}\right)\right) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$
by
$\mathrm{f}\left(\mathrm{u}_{2 i-1}\right)=\mathrm{k}+10 \mathrm{i}-10,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n+1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{u}_{2 i}\right)=\mathrm{k}+10 \mathrm{i}-8,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{v}_{i}\right)=\mathrm{k}+10 \mathrm{i}-4,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{w}_{i}\right)=\mathrm{k}+10 \mathrm{i}-5,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
Then, the edge labels of $\operatorname{AD}\left(\mathrm{T}_{n}\right)$ are
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i}\right)=\mathrm{k}+10 \mathrm{i}-9,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i+1}\right)=\mathrm{k}+10 \mathrm{i}-3,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{v}_{\mathrm{i}}\right)=\mathrm{k}+10 \mathrm{i}-6,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd. $\mathrm{f}^{*}\left(\mathrm{u}_{2 i+1} \mathrm{v}_{i}\right)=\mathrm{k}+10 \mathrm{i}-1,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even\& $1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd. $\mathrm{f}^{*}\left(\mathrm{u}_{2 i+1} \mathrm{w}_{i}\right)=\mathrm{k}+10 \mathrm{i}-2,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{~W}_{i}\right)=\mathrm{k}+10 \mathrm{i}-7,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
Hence $f\left[\mathrm{~V}\left(\operatorname{AD}\left(\mathrm{~T}_{n}\right)\right)\right] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}\left(\operatorname{AD}\left(\mathrm{T}_{n}\right)\right)\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.
An example of 50 -super cube root cube mean labeling of $A D\left(T_{7}\right)$ [triangle
start from u_{2}] is shown in Figure 6.

Figure 6: 50 -super cube root cube mean labeling of $A D\left(T_{7}\right)$ [triangle start from u_{2}]

From the above cases, an alternate double triangular snake graph $\mathrm{AD}\left(\mathrm{T}_{n}\right)$ is a k-super cube root cube mean graph

Theorem 3.5. Any Quadrilateral snake graph Q_{n} is a k-super cube root cube mean graph.

Proof. Let Q_{n} be a quadrilateral snake graph.
Here $\mathrm{p}=3 \mathrm{n}-2 \& \mathrm{q}=4 \mathrm{n}-4$ Hence $\mathrm{p}+\mathrm{q}=7 \mathrm{n}-6$.
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{Q}_{n}\right) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{k}+7 \mathrm{i}-7,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{i}\right)=\mathrm{k}+7 \mathrm{i}-5,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{w}_{1}\right)=\left\{\begin{array}{l}k+4, k=1,2,3 ; \\ k+5, \text { otherwise } .\end{array}\right.$
$\mathrm{f}\left(\mathrm{w}_{i}\right)=\mathrm{k}+7 \mathrm{i}-2,2 \leq \mathrm{i} \leq \mathrm{n}-1$.
Then, the edge labels of Q_{n} are
$\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=\left\{\begin{array}{l}k+5, k=1,2,3 ; \\ k+4, \text { otherwise } .\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{u}_{i+1}\right)=\mathrm{k}+7 \mathrm{i}-3,2 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{v}_{i}\right)=\mathrm{k}+7 \mathrm{i}-6,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{i+1} \mathrm{w}_{i}\right)=\mathrm{k}+7 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{v}_{i} \mathrm{w}_{i}\right)=\mathrm{k}+7 \mathrm{i}-4,1 \leq \mathrm{i} \leq \mathrm{n}-1$.
Hence $f\left[\mathrm{~V}\left(\mathrm{Q}_{n}\right)\right] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}\left(\mathrm{Q}_{n}\right)\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.
Therefore any Quadrilateral snake graph Q_{n} is a k-super cube root cube
mean graph.
An example of 30 -Super cube root cube mean labeling of Q_{5} is shown in
Figure 7.

Figure 7: 30-Super cube root cube mean labeling of Q_{5}

Theorem 3.6. Any alternate quadrilateral snake graph $A\left(Q_{n}\right)$ is a k-super cube root cube mean graph.

Proof. Let A $\left(\mathrm{Q}_{n}\right)$ be an alternate quadrilateral snake graph. In this theorem, consider two cases.

Case 1. Quadrilateral in $\mathrm{A}\left(\mathrm{Q}_{n}\right)$ starts from u_{1}.
In this case $\mathrm{p}=\left\{\begin{array}{l}2 n, \text { if } n \text { is even; } \\ 2 n-1, \text { if } n \text { is odd. }\end{array}\right.$
$\& \mathrm{q}= \begin{cases}\frac{5 n-2}{2}, & \text { if } n \text { is even } ; \\ \frac{5 n-5}{2}, & \text { if } n \text { is odd. }\end{cases}$

Hence $\mathrm{p}+\mathrm{q}=\left\{\begin{array}{l}\frac{9 n-2}{2}, \text { if } n \text { is even } ; \\ \frac{9 n-7}{2}, \text { if } n \text { is odd. }\end{array}\right.$
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{A}\left(\mathrm{Q}_{n}\right)\right) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$\mathrm{f}\left(\mathrm{u}_{2 i-1}\right)=\mathrm{k}+9 \mathrm{i}-9,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n+1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{u}_{2 i}\right)=\mathrm{k}+9 \mathrm{i}-2,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{v}_{i}\right)=\mathrm{k}+9 \mathrm{i}-7,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{w}_{1}\right)=\left\{\begin{array}{l}k+4, \text { if } k=1,2,3 ; \\ k+5, \text { otherwise. }\end{array}\right.$
$\mathrm{f}\left(\mathrm{w}_{i}\right)=\mathrm{k}+9 \mathrm{i}-4,2 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 2 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
Then, the edge labels of $\mathrm{A}\left(\mathrm{Q}_{n}\right)$ are
$\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=\left\{\begin{array}{l}k+5, \text { if } k=1,2,3 ; \\ k+4, \text { otherwise. }\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i}\right)=\mathrm{k}+9 \mathrm{i}-5,2 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 2 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i+1}\right)=\mathrm{k}+9 \mathrm{i}-1,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{v}_{i}\right)=\mathrm{k}+9 \mathrm{i}-8,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{w}_{i}\right)=\mathrm{k}+9 \mathrm{i}-3,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{v}_{i} \mathrm{w}_{i}\right)=\mathrm{k}+9 \mathrm{i}-6,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
Hence $f\left[\mathrm{~V}\left(\mathrm{~A}\left(\mathrm{Q}_{n}\right)\right)\right] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}\left(\mathrm{A}\left(\mathrm{Q}_{n}\right)\right)\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.
An example of 100 -super cube root cube mean labeling of $\mathrm{A}\left(\mathrm{Q}_{6}\right)$ [quadri-
lateral start from u_{1}] is shown in Figure 8.

Figure 8: 100-super cube root cube mean labeling of $A\left(Q_{6}\right)$ [quadrilateral start from u_{1}]

Case 2. Quadrilateral in $A\left(Q_{n}\right)$ starts from u_{2}
In this case $\mathrm{p}=\left\{\begin{array}{l}2 n-2, \text { if } n \text { is even } ; \\ 2 n-1, \text { if } n \text { is odd. }\end{array}\right.$
$\& \mathrm{q}=\left\{\begin{array}{l}\frac{5 n}{2}-4, \text { if } n \text { is even } ; \\ \frac{5 n-5}{2}, \text { if } n \text { is odd. }\end{array}\right.$

Hence $\mathrm{p}+\mathrm{q}=\left\{\begin{array}{l}\frac{9 n-12}{2}, \text { if } n \text { is even } ; \\ \frac{9 n-7}{2}, \text { if } n \text { is odd. }\end{array}\right.$

Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{A}\left(\mathrm{Q}_{n}\right)\right) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$\mathrm{f}\left(\mathrm{u}_{2 i-1}\right)=\mathrm{k}+9 \mathrm{i}-9,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n+1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{u}_{2 i}\right)=\mathrm{k}+9 \mathrm{i}-7,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd. $\mathrm{f}\left(\mathrm{v}_{i}\right)$
$=\mathrm{k}+9 \mathrm{i}-5,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{w}_{1}\right)=\left\{\begin{array}{l}k+6, \text { if } k=1 ; \\ k+7, \text { otherwise } .\end{array}\right.$
$\mathrm{f}\left(\mathrm{w}_{i}\right)=\mathrm{k}+9 \mathrm{i}-2,2 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 2 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.

Then, the edge labels of $\mathrm{A}\left(\mathrm{Q}_{n}\right)$ are
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i}\right)=\mathrm{k}+9 \mathrm{i}-8,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2} \mathrm{u}_{3}\right)=\left\{\begin{array}{l}k+7, \text { if } k=1 ; \\ k+6, \text { otherwise } .\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i+1}\right)=\mathrm{k}+9 \mathrm{i}-3,2 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 2 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is
odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{v}_{i}\right)=\mathrm{k}+9 \mathrm{i}-6,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i+1} \mathrm{w}_{i}\right)=\mathrm{k}+9 \mathrm{i}-1,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{v}_{i} \mathrm{w}_{i}\right)=\mathrm{k}+9 \mathrm{i}-4,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
Hence $f\left[\mathrm{~V}\left(\mathrm{~A}\left(\mathrm{Q}_{n}\right)\right)\right] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}\left(\mathrm{A}\left(\mathrm{Q}_{n}\right)\right)\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.

An example of 100 -super cube root cube mean labeling of $\mathrm{A}\left(\mathrm{Q}_{7}\right)$ [quadrilateral start from u_{2}] is shown in Figure 9.

Figure 9: 100-super cube root cube mean labeling of $A\left(Q_{7}\right)$ [quadrilateral start from u_{2}]

From the above cases, an alternate quadrilateral snake graph $A\left(Q_{n}\right)$ is a k-super cube root cube mean graph.

Theorem 3.7. Any double quadrilateral snake graph $D\left(Q_{n}\right)$ is a k-super cube root cube mean graph.

Proof. Let $\mathrm{D}\left(\mathrm{Q}_{n}\right)$ be a double quadrilateral snake graph.
Here $\mathrm{p}=5 \mathrm{n}-4 \& \mathrm{q}=7 \mathrm{n}-7$
Hence $\mathrm{p}+\mathrm{q}=12 \mathrm{n}-11$.
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{D}\left(\mathrm{Q}_{n}\right)\right) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{k}+12 \mathrm{i}-12,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{k}+12 \mathrm{i}-10,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{w}_{i}\right)=\mathrm{k}+12 \mathrm{i}-7,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(v_{i}^{\prime}\right)=\mathrm{k}+12 \mathrm{i}-6,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(w_{1}^{\prime}\right)=\left\{\begin{array}{l}k+8, \text { if } k=1,2,3, \ldots, 9 ; \\ k+10, \text { otherwise. }\end{array}\right.$
$\mathrm{f}\left(w_{i}^{\prime}\right)=\mathrm{k}+12 \mathrm{i}-2,2 \leq \mathrm{i} \leq \mathrm{n}-1$.
Then, the edge labels of $\mathrm{D}\left(\mathrm{Q}_{n}\right)$ are
$\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=\left\{\begin{array}{l}k+9, \text { if } k=1,2,3, \ldots, 9 ; \\ k+7, \text { otherwise } .\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{u}_{i+1}\right)=\mathrm{k}+12 \mathrm{i}-5,2 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{v}_{i}\right)=\mathrm{k}+12 \mathrm{i}-11,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{2} \mathrm{w}_{1}\right)=\left\{\begin{array}{l}k+10, \text { if } k=1,2,3, \ldots, 9 ; \\ k+9, \text { otherwise } .\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{i+1} \mathrm{w}_{i}\right)=\mathrm{k}+12 \mathrm{i}-3,2 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{v}_{i} \mathrm{w}_{i}\right)=\mathrm{k}+12 \mathrm{i}-9, \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{i} \mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+12 \mathrm{i}-8, \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{i+1} \mathrm{w}_{i}^{\prime}\right)=\mathrm{k}+12 \mathrm{i}-1, \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{v}_{1}^{\prime} \mathrm{w}_{1}^{\prime}\right)=\left\{\begin{array}{l}k+7, \text { if } k=1,2,3, \ldots, 9 ; \\ k+8, \text { otherwise. }\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{v}_{i}^{\prime} \mathrm{w}_{i}^{\prime}\right)=\mathrm{k}+12 \mathrm{i}-4,2 \leq \mathrm{i} \leq \mathrm{n}-1$
Hence $\mathrm{f}\left[\mathrm{V}\left(\mathrm{D}\left(\mathrm{Q}_{n}\right)\right)\right] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}\left(\mathrm{D}\left(\mathrm{Q}_{n}\right)\right)\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.
Therefore any double quadrilateral snake graph $\mathrm{D}\left(\mathrm{Q}_{n}\right)$ is a k-super cube root cube mean graph.
An example of 25 - Super cube root cube mean labeling of $\mathrm{D}\left(\mathrm{Q}_{5}\right)$ is shown
in Figure 10.

Figure 10: caption25- Super cube root cube mean labeling of $D\left(Q_{5}\right)$

Theorem 3.8. Any alternate double quadrilateral snake graph $A D\left(Q_{n}\right)$ is a k-super cube root cube mean graph.

Proof. Let $\mathrm{AD}\left(\mathrm{Q}_{n}\right)$ be an alternate double quadrilateral snake graph In this theorem, consider two cases.

Case 1. Quadrilateral in $\operatorname{AD}\left(\mathrm{Q}_{n}\right)$ starts from u_{1}
In this case $\mathrm{p}=\left\{\begin{array}{l}3 n, \text { if } n \text { is even; } \\ 3 n-2, \text { if } n \text { is odd. }\end{array}\right.$
$\& \mathrm{q}=\left\{\begin{array}{l}4 n-1, \text { if } n \text { is even } ; \\ 4 n-4, \text { if } n \text { is odd. }\end{array}\right.$
Hence $\mathrm{p}+\mathrm{q}=\left\{\begin{array}{l}7 n-1, \text { if } n \text { is even } ; \\ 7 n-6, \text { if } n \text { is odd. }\end{array}\right.$
Define a function $\mathrm{f}: \operatorname{V}\left(\mathrm{AD}\left(\mathrm{Q}_{n}\right)\right) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$
by
$\mathrm{f}\left(\mathrm{u}_{2 i-1}\right)=\mathrm{k}+14 \mathrm{i}-14,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n+1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{u}_{2 i}\right)=\mathrm{k}+14 \mathrm{i}-2,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{v}_{i}\right)=\mathrm{k}+14 \mathrm{i}-12,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{w}_{i}\right)=\mathrm{k}+14 \mathrm{i}-9,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+14 \mathrm{i}-8,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{w}_{1}^{\prime}\right)=\left\{\begin{array}{l}k+8, \text { if } k=1,2,3, \ldots, 9 ; \\ k+10, \text { otherwise } .\end{array}\right.$
$\mathrm{f}\left(\mathrm{w}_{i}^{\prime}\right)=\mathrm{k}+14 \mathrm{i}-4,2 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 2 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
Then, the edge labels of $\operatorname{AD}\left(\mathrm{Q}_{n}\right)$ are
$\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=\left\{\begin{array}{l}k+9, \text { if } k=1,2, \ldots, 9 ; \\ k+7, \text { otherwise } .\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i}\right)=\mathrm{k}+14 \mathrm{i}-7,2 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 2 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i+1}\right)=\mathrm{k}+14 \mathrm{i}-1,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{v}_{i}\right)=\mathrm{k}+14 \mathrm{i}-13,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2} \mathrm{~W}_{1}\right)=\left\{\begin{array}{l}k+10, \text { if } k=1,2, \ldots, 9 ; \\ k+9, \text { otherwise. }\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{w}_{i}\right)=\mathrm{k}+14 \mathrm{i}-5,2 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 2 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{i}\right)=\mathrm{k}+14 \mathrm{i}-11,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+14 \mathrm{i}-10,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{w}_{i}^{\prime}\right)=\mathrm{k}+14 \mathrm{i}-3,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{v}_{1}^{\prime} \mathrm{w}_{1}^{\prime}\right)=\left\{\begin{array}{l}k+7, \text { if } k=1,2, \ldots, 9 ; \\ k+8, \text { otherwise } .\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{v}_{i}^{\prime} \mathrm{w}_{i}^{\prime}\right)=\mathrm{k}+14 \mathrm{i}-6, \quad 2 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 2 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
Hence $\mathrm{f}\left[\mathrm{V}\left(\mathrm{AD}\left(\mathrm{Q}_{n}\right)\right)\right] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}\left(\mathrm{AD}\left(\mathrm{Q}_{n}\right)\right)\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.

An example of 115 -super cube root cube mean labeling of $A D\left(Q_{6}\right)$ [quadrilateral start from u_{1}] is shown in Figure 11.

Figure 11: 115-super cube root cube mean labeling of $A D\left(Q_{6}\right)$ [quadrilateral start from u_{1}]

Case 2. Quadrilateral in $\operatorname{AD}\left(\mathrm{Q}_{n}\right)$ starts from u_{2}
In this case $\mathrm{p}=\left\{\begin{array}{l}3 n-4, \text { if } n \text { is even } ; \\ 3 n-2, \text { if } n \text { is odd. }\end{array}\right.$
$\& \mathrm{q}=\left\{\begin{array}{l}4 n-7, \text { if } n \text { is even } ; \\ 4 n-4, \text { if } n \text { is odd. }\end{array}\right.$
Hence $\mathrm{p}+\mathrm{q}=\left\{\begin{array}{l}7 n-11, \text { if } n \text { is even; } \\ 7 n-6, \text { if } n \text { is odd } .\end{array}\right.$

Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{AD}\left(\mathrm{Q}_{n}\right)\right) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$ by
$\mathrm{f}\left(\mathrm{u}_{2 i-1}\right)=\mathrm{k}+14 \mathrm{i}-14,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n+1}{2}$ if n is odd. $\mathrm{f}\left(\mathrm{u}_{2 i}\right)=\mathrm{k}+14 \mathrm{i}-12,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{v}_{i}\right)=\mathrm{k}+14 \mathrm{i}-10,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{w}_{i}\right)=\mathrm{k}+14 \mathrm{i}-7,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+14 \mathrm{i}-6,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}\left(\mathrm{w}_{1}^{\prime}\right)=\left\{\begin{array}{l}k+11, \text { if } k=1,2,3, \ldots, 7 ; \\ k+12, \text { otherwise. }\end{array}\right.$
$\mathrm{f}\left(\mathrm{w}_{i}^{\prime}\right)=\mathrm{k}+14 \mathrm{i}-2,2 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 2 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
Then, the edge labels of $\operatorname{AD}\left(\mathrm{Q}_{n}\right)$ are
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i-1} \mathrm{u}_{2 i}\right)=\mathrm{k}+14 \mathrm{i}-13,1 \leq \mathrm{i} \leq \frac{n}{2}$ if n is even \& $1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2} \mathrm{u}_{3}\right)=\left\{\begin{array}{l}k+10, \text { if } k=1,2, \ldots, 7 ; \\ k+9, \text { otherwise. }\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{u}_{2 i+1}\right)=\mathrm{k}+14 \mathrm{i}-5,2 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 2 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is
odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{v}_{i}\right)=\mathrm{k}+14 \mathrm{i}-11, \quad 1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{3} \mathrm{w}_{1}\right)=\left\{\begin{array}{l}k+12, \text { if } k=1,2, \ldots, 7 ; \\ k+11, \text { otherwise. }\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i+1} \mathrm{~W}_{i}\right)=\mathrm{k}+14 \mathrm{i}-3, \quad 2 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 2 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is
odd.
$\mathrm{f}^{*}\left(\mathrm{v}_{i} \mathrm{w}_{i}\right)=\mathrm{k}+14 \mathrm{i}-9,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i} \mathrm{v}_{i}^{\prime}\right)=\mathrm{k}+14 \mathrm{i}-8,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
$\mathrm{f}^{*}\left(\mathrm{u}_{2 i+1} \mathrm{w}_{i}^{\prime}\right)=\mathrm{k}+14 \mathrm{i}-1,1 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even \& $1 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is
odd.
$\mathrm{f}^{*}\left(\mathrm{v}_{1}^{\prime} \mathrm{w}_{1}^{\prime}\right)=\left\{\begin{array}{l}k+9, \text { if } k=1,2, \ldots, 7 ; \\ k+10, \text { otherwise. }\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{v}_{i}^{\prime} \mathrm{w}_{i}^{\prime}\right)=\mathrm{k}+14 \mathrm{i}-4,2 \leq \mathrm{i} \leq \frac{n-2}{2}$ if n is even $\& 2 \leq \mathrm{i} \leq \frac{n-1}{2}$ if n is odd.
Hence $f\left[\mathrm{~V}\left(\mathrm{AD}\left(\mathrm{Q}_{n}\right)\right)\right] \cup\left\{\mathrm{f}^{*}(\mathrm{e}): \mathrm{e} \in \mathrm{E}\left(\mathrm{AD}\left(\mathrm{Q}_{n}\right)\right)\right\}=\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{p}+\mathrm{q}+\mathrm{k}-1\}$.
An example of 115 -super cube root cube mean labeling of $\operatorname{AD}\left(\mathrm{Q}_{7}\right)$ [quadri-
lateral start from $\left.\mathrm{u}_{2}\right]$ is shown in Figure 12.

Figure 12: 115- super cube root cube mean labeling of $A D\left(Q_{7}\right)$ [quadrilateral start from u_{2}]

From the above cases, an alternate double quadrilateral snake graph $\mathrm{AD}\left(\mathrm{Q}_{n}\right)$ is a k-super cube root cube mean graph.

References

[1] K. Akilandeswari, "Super Root Square Mean Labeling of Some Graphs", International Journal of Science and Research (IJSR), vol. 6, no. 2, 2017. [On line]. Available: https:// bitly/ 2YxOkZB
[2] J. A. Gallian, "A dynamic survey of graph labeling", The Electronic Journal of Combinatorics, \# DS6., 2019, [On line]. Available: https:/ / bit.ly/ 2AojJ92
[3] P. Jeyanthi, D. Ramya and P. Thangavelu, "On super mean labeling of some graphs", SUT Journal of Mathematics, vol. 46, no. 1, pp. 53-66, 2010. [On line]. Available: https:// bit.ly/ 2UHqOrX
[4] S. Kulandhai Therese and K. Romila, "Cube root Cube Mean labeling of Graphs", International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 2, 2019. [On line]. Available: https:/ / bit.ly/ 30Gy1wq
[5] V. S. Radhika and A. Vijayan, "Super Cube root Cube Mean labeling of Graphs", Journal of Science and Technology, vol. 5, pp. 17-24, 2020. [On line]. Available: https:/ / bit.ly/ 30LAghI
[6] S. Sandhya, S. Somasundaram and S. Anusa, "Some More Results on Root Square mean Graphs", Journal of Mathematics Research, vol. 7, no. 1, pp. 72-81, 2015. [On line]. Available: https:/ / bit.ly/ 30DTCpd
[7] M. Tamilselvi, K. Akilandeswari, and V. Suguna, "k-Super Mean Labeling of Some Graphs", International journal of Science and Research (IJSR), vol. 5, no. 6, 2016. [On line]. Available: https:/ / bit.ly/ 2UEeMzu

V. Princy Kala

Department of Mathematics,
Holy Cross College (Autonomous),
Nagercoil-629 004, TN,
India
e-mail: princykala@holycrossngl.edu.in orcid.org/0000-0001-6264-1100

